Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides
نویسندگان
چکیده
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
منابع مشابه
Use of Chitosan Conduit for Bridging Small-Gap Peripheral Nerve Defect in Sciatic Nerve Transection Model of Rat
Objective-To evaluate effect of chitosan conduit for peripheral nerve regeneration using sciatic nerve transection model in rat Design- Experimental in vivo study. Animals- Sixty healthy male Wistar rats. Procedures-The rats were divided into four experimental groups (n=15) randomly. In sham group the left sciatic nerve was exposed through a gluteal muscle incision and after careful...
متن کاملVideo-gait analysis of functional recovery of nerve repaired with chitosan nerve guides.
Quantitative analysis of peripheral nerve regeneration using nerve guides is commonly evaluated through histomorphometry and walking track analysis. We conducted a unique assessment of functional sciatic nerve recovery treated with chitosan nerve guides. We used video-gait analysis to evaluate the extent of functional nerve recovery by measuring the ankle angle at different gait cycle phases. W...
متن کاملChallenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a seco...
متن کاملEffects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.
We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were cha...
متن کاملForeign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes
Electrospun materials have been widely explored for biomedical applications because of their advantageous characteristics, i.e., tridimensional nanofibrous structure with high surface-to-volume ratio, high porosity, and pore interconnectivity. Furthermore, considering the similarities between the nanofiber networks and the extracellular matrix (ECM), as well as the accepted role of changes in E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014